

Regina Obe

What is coming in PostGIS 3.1 and new in PostGIS 3.0What is coming in PostGIS 3.1 and new in PostGIS 3.0

(https://www.paragoncorporation.com)
(https://postgis.net)

PostGIS In Action 3rd Edition available for PurchasePostGIS In Action 3rd Edition available for Purchase

Get a copy of 2nd edition with purchase of 3rd edition
Covers PostGIS 3 and 3.1
Special promo 40% off (Jun 22 - Jun 30 2020) on all Manning E-Books and hard-
copy books including PostGIS In Action 3d

12 of 17 chapters completed.
 �nd code and data here

Live Book

https://www.manning.com/books/postgis-in-action-third-edition
(https://www.manning.com/books/postgis-in-action-third-edition)

https://www.postgis.us (https://www.postgis.us)

https://livebook.manning.com/book/postgis-in-action-third-edition
(https://livebook.manning.com/book/postgis-in-action-third-edition)

https://www.manning.com/books/postgis-in-action-third-edition
https://www.postgis.us/
https://livebook.manning.com/book/postgis-in-action-third-edition

Safe Harbor StatementSafe Harbor Statement

Some of the following mentions are
forward looking statements and
intended to outline the direction of
PostGIS development.
They are not a commitment to deliver
any code or functionality and should
not be relied upon in making life
altering decisions. The development,
release, and timing of any features or
functionality described is subject to
change without warning.

What is coming in PostGIS 3.1?What is coming in PostGIS 3.1?
Manual:

Windows:
 (has fresh updates for PostgreSQL 11,12,13)

Debian and Ubuntu: (has
3.1.0alpha1)

https://postgis.net/docs/manual-dev/ (https://postgis.net/docs/manual-dev/)

https://postgis.net/windows_downloads/
(https://postgis.net/windows_downloads/)

https://apt.postgresql.org (https://apt.postgresql.org)

https://postgis.net/docs/manual-dev/
https://postgis.net/windows_downloads/
https://apt.postgresql.org/

New Functions in PostGIS 3.1 so farNew Functions in PostGIS 3.1 so far
Gridding functions - ST_HexagonGrid , ST_SquareGrid,(in 3.1.0alpha1)
ST_MaximumInscribedCircle (in master)

PostGIS 3.1 functions ST_HexagonGridPostGIS 3.1 functions ST_HexagonGrid

1. ST_HexagonGrid creates a grid of the bounding box of geometry passed to it
2. Need ST_Intersects to �lter out the hexagons that don't intersect the geometry

3. The size is length of an edge on the hexagon

https://postgis.net/docs/manual-dev/ST_HexagonGrid.html
(https://postgis.net/docs/manual-dev/ST_HexagonGrid.html)

https://postgis.net/docs/manual-dev/ST_HexagonGrid.html

In this case we are using Northern CA State Plane feet.

10,000 feet edge size 5,000 feet edge size

SELECT grid.i, grid.j, ST_Union(grid.geom) AS geom
FROM ch11.cities AS c
 INNER JOIN ST_HexagonGrid(10000, c.geom) AS grid ON ST_Intersects(c.geom, grid.geom)
 WHERE c.city = 'SAN FRANCISCO'
GROUP BY grid.i, grid.j, grid.geom;

Hexagons cut at the middle, not able to nest a hexagon completely in anotherHexagons cut at the middle, not able to nest a hexagon completely in another

PostGIS 3.1 functions ST_SquareGridPostGIS 3.1 functions ST_SquareGrid

1. ST_SquareGrid creates a grid of the bounding box of geometry passed to it
2. Need ST_Intersects to �lter out the squares that don't intersect the geometry
3. The size: 10,000 is length of an edge in measure of the units of the spatial

reference system, in our case it would be California State Plane feet

https://postgis.net/docs/manual-dev/ST_SquareGrid.html
(https://postgis.net/docs/manual-dev/ST_SquareGrid.html)

https://postgis.net/docs/manual-dev/ST_SquareGrid.html

PostGIS 3.1 ST_SquareGrid San FranciscoPostGIS 3.1 ST_SquareGrid San Francisco

10,000 feet edge size 5,000 feet edge size
1,000 feet edge size

SELECT grid.i, grid.j, ST_Union(grid.geom) AS geom
FROM ch11.cities AS c
 INNER JOIN ST_SquareGrid(10000, c.geom) AS grid ON ST_Intersects(c.geom, grid.geom)
 WHERE c.city = 'SAN FRANCISCO'
GROUP BY grid.i, grid.j, grid.geom;

Square Grids are neatly divisible �t into smaller gridsSquare Grids are neatly divisible �t into smaller grids

PostGIS 3.1: MaximumInscribedCircle - new vs. MinimumBoundingCirclePostGIS 3.1: MaximumInscribedCircle - new vs. MinimumBoundingCircle
http://postgis.net/docs/manual-dev/ST_MaximumInscribedCircle.html
(http://postgis.net/docs/manual-dev/ST_MaximumInscribedCircle.html)
http://postgis.net/docs/ST_MinimumBoundingCircle.html
(http://postgis.net/docs/ST_MinimumBoundingCircle.html)

SELECT ic.radius, ic.center, ic.nearest, ST_Buffer(ic.center, ic.radius) As geom
 FROM ch11.boroughs AS c, ST_MaximumInscribedCircle(c.geom) AS ic
 WHERE boroname = 'Brooklyn';

SELECT ST_MinimumBoundingCircle(c.geom) AS geom
 FROM ch11.boroughs AS c
 WHERE boroname = 'Brooklyn';

http://postgis.net/docs/manual-dev/ST_MaximumInscribedCircle.html
http://postgis.net/docs/ST_MinimumBoundingCircle.html

Improvements in PostGIS 3.1 so farImprovements in PostGIS 3.1 so far
Ability to cast geometry to geojson directly
Detoasting of geometries avoided with && -- means much faster relation
operations
Textual output functions like ST_ASText, ST_AsGeoJSON etc, 5-100x faster
topology.GetRingEdges now implemented in C (postgis_topology extension)
ST_Force3* functions can now take a measure.

Not Committed yet to PostGIS 3.1, but there is hopeNot Committed yet to PostGIS 3.1, but there is hope

Improved robustness of ST_Intersection and other functions if running GEOS 3.9.0.
Should result in fewer Topology Exception errors when doing ST_Intersection

and ST_Union

Drop sfcgal (cgal binding) from postgis-3.so and spin-off as postgis_sfcgal

Key changes in PostGIS 3.0Key changes in PostGIS 3.0
postgis_raster now separate extension from postgis, for easier management

minor by default dropped, so lib will be postgis-3, postgis_raster-3,
postgis_topology-3 (for 3.0 and 3.1)
Uses supportfn plumbing introduced in PostgreSQL 12 -- means better parallelism
support, more cases where parallel will kick in without any changes.
dropped functions ST_Accum (use array_agg)
SFCGAL 2-d overloads ST_Intersection, ST_Intersects these functions now natively
support 2D TINS and Polyhedral surfaces
SFCGAL ST_3DIntersects overload dropped - ST_3DIntersects native now
supports TINS and solid Polyhedral Surfaces
ST_AsMVT functions now faster and support feature id
Enhanced ST_AsGeoJSON now can return a whole feature given a row
On disk format changed - now has 8 bytes for header (not noticable), your data
gets converted to new format when you update data, but not doing a pg_upgrade.

How you upgrade from PostGIS 2.* to PostGIS 3How you upgrade from PostGIS 2.* to PostGIS 3
ALTER EXTENSION postgis UPDATE; -- if running pre PostGIS 2.5

SELECT postgis_extensions_upgrade(); -- this unpackages raster

SELECT postgis_extensions_upgrade(); -- do again to repackage raster

How you install extensions in PostGIS 3+How you install extensions in PostGIS 3+
CREATE EXTENSION postgis;
CREATE EXTENSION postgis_raster; -- used to be part of postgis extension
CREATE EXTENSION postgis_sfcgal; -- much of the functionality like dealing with 2d TINS a
nd Polyhedralsurfaces now supported in PostGIS proper
CREATE EXTENSION postgis_topology;
CREATE EXTENSION postgis_tiger_geocoder CASCADE; -- needs postgis and fuzzystrmatch

Upgrading from PostGIS 3.0 to PostGIS 3.1Upgrading from PostGIS 3.0 to PostGIS 3.1
SELECT postgis_extensions_upgrade();

Minor version dropped from LibMinor version dropped from Lib

For developers who need to test both versions and cook their own PostGIS meal:

Before:
 postgis-2.5.so
 rtpostgis-2.5.so
 postgis-topology-2.5.so

In 3.0:
 postgis-3.so
 postgis-raster-3.so
 postgis-topology-3.so

In 3.1 for 3.forevermore:
 postgis-3.so
 postgis-raster-3.so
 postgis-topology-3.so

./configure --with-library-minor-version

PostGIS 3.0 uses index supportfn instead of In-liningPostGIS 3.0 uses index supportfn instead of In-lining

PostGIS 3.0 supportfnPostGIS 3.0 supportfn
In past below did not parallelize well without turning a bunch of knobs, with PostGIS
3+12 it does with very little change in settings aside from number of processors and
gathers.

SELECT p.pid, p.geom, s.name As street_name
FROM parcels AS p
 INNER JOIN streets AS s ON ST_Intersects(p.geom, s.geom);

PostGIS Pre-3.0/PostgreSQL < 12 Relied on SQL Inlining forPostGIS Pre-3.0/PostgreSQL < 12 Relied on SQL Inlining for
index magicindex magic
In 2.5 or PostgreSQL < 12, geometry ST_Intersects looked like:

CREATE OR REPLACE FUNCTION st_intersects(
 geom1 geometry,
 geom2 geometry)
 RETURNS boolean
 LANGUAGE 'sql'
 COST 100
 IMMUTABLE PARALLEL SAFE
AS $$SELECT $1 && $2 AND _ST_Intersects($1,$2)$$;

PostGIS 3+/PostgreSQL 12+ Uses magic support fn for indexPostGIS 3+/PostgreSQL 12+ Uses magic support fn for index
magicmagic
geometry/geography ST_Intersects now looks like:

CREATE OR REPLACE FUNCTION st_intersects(
 geom1 geometry,
 geom2 geometry)
 RETURNS boolean
 LANGUAGE 'c'
 COST 10000
 IMMUTABLE STRICT PARALLEL SAFE
 SUPPORT postgis.postgis_index_supportfn
AS '$libdir/postgis-3', 'ST_Intersects';

PostGIS 3.0 enhanced GeoJSON support to now accept full featuresPostGIS 3.0 enhanced GeoJSON support to now accept full features
very very old way of creating a feature collection -

 (painful)

New way

https://www.postgresonline.com/journal/archives/267-Creating-GeoJSON-Feature-
Collections-with-JSON-and-PostGIS-functions.html
(https://www.postgresonline.com/journal/archives/267-Creating-GeoJSON-Feature-
Collections-with-JSON-and-PostGIS-functions.html)

SELECT json_build_object('type', 'FeatureCollection', 'features',
 json_agg(ST_AsGeoJSON(c.*)::json))
 FROM ch11.cities AS c
 -- (transform is just to convert to 2227 North CA stateplane feet)
 WHERE c.geom && ST_Transform(ST_MakeEnvelope(-122, 37.74, -121.5, 38,4326), 2227);

https://www.postgresonline.com/journal/archives/267-Creating-GeoJSON-Feature-Collections-with-JSON-and-PostGIS-functions.html

In []: %%sql
SELECT ST_AsGeoJSON(a.*)
FROM ch09.airports AS a
 WHERE municipality ILIKE 'BOSTON%' LIMIT 3;

PostGIS 3.0 ST_ASMVT faster and more parallelizablePostGIS 3.0 ST_ASMVT faster and more parallelizable
If you are new to Mapbox Vector Tiles, try using

 (Crunchy Data pg_tileserv). pg_tileserv is a
minimalist tile server written in Go that leverages PostGIS MVT functions. General
concept behind it detailed -

1. Download the binary for your OS
2. Create a shell script # Nix

WindowsWindows

1. Edit the packaged pg_tileserv.toml �le if you want to change the port etc.

2. Browse to

https://github.com/CrunchyData/pg_tileserv
(https://github.com/CrunchyData/pg_tileserv)

https://info.crunchydata.com/blog/dynamic-vector-tiles-
from-postgis (https://info.crunchydata.com/blog/dynamic-vector-tiles-from-postgis)

export DATABASE_URL=postgresql://postgres:password@localhost/postgis_in_action
pg_tileserv

set DATABASE_URL=postgresql://postgres:password@localhost/postgis_in_action
pg_tileserv

http://localhost:7800 (http://localhost:7800)

https://github.com/CrunchyData/pg_tileserv
https://info.crunchydata.com/blog/dynamic-vector-tiles-from-postgis
http://localhost:7800/

pg_tileserv catalogpg_tileserv catalog

How do you use mapbox vector tiles for your maps?How do you use mapbox vector tiles for your maps?

In []: from ipyleaflet import Map, VectorTileLayer, basemaps, LayersControl

http://localhost:7800/ch04.us_counties/{z}/{x}/{y}.pbf #tile url for counties can use in
leaflet
vlparcels = VectorTileLayer(name='Parcels', url='http://localhost:7800/staging.parcels/{z}
/{x}/{y}.pbf')
vlff = VectorTileLayer(name='Fast Food', url='http://localhost:7800/ch01.restaurants/{z}/
{x}/{y}.pbf')

m = Map(center=(42.38,-71.12), zoom = 15, basemap=basemaps.OpenStreetMap.BlackAndWhite)

m.add_layer(vlparcels)
m.add_layer(vlff)
m.add_control(LayersControl())
m

