5 PARAGON SPATIAL TRICKS PostGIS
CORPORATION REGINA OBE W;

lr@pcorp.us @reginaobe
Consulting

Buy our books! at http://www.postgis.us/page_buy_ book

BOOK IN PROGRESS: PGROUTING: A
PRACTICAL GUIDE
HTTP://LOCATEPRESS.COM/PGROUTING

oca<se @"

PRESS %

http://www.paragoncorporation.com/
http://postgis.net/
mailto:lr@pcorp.us
https://twitter.com/reginaobe
http://www.paragoncorporation.com/Rates.aspx
http://www.postgis.us/page_buy_book
http://locatepress.com/pgrouting
http://locatepress.com/pgrouting

FIND N-CLOSEST PLACES (KNN)

Given a location, find the N-Closest places. Geography and n-D
geometry operator support new in PostGIS 2.2.

EXAMPLE N-CLOSEST USING GEOGRAPHY
DATA TYPE

Closest 5 Indian restaurants to here

-— 51lms
SELECT name, other tags > amenlty As type,
ST Point (-) : :geography <-> geog As dist m

FROM raleigh pois As p01s
WHERE other Tags @> 'cuisine=>indian'::hstore
ORDER BY dist m

LIMIT ;
name | type | dist m

____________________________ T
Blue Mango | restaurant | 1059.16153525522
Kadhambam Spices | | 19087.6284119947
Sitar | restaurant | 35408.8116290629
Vimala's Curryblossom Cafe | restaurant | 40860.2976504395
Mint | restaurant | 40963.1102551244
(5 rows)

HE N jmzzee |

idx_raleigh_pois_geog Limit

FIND 2 CLOSEST ROADS TO POINTS OF
INTEREST WITH LATERAL

PostgreSQL 9.5+ and PostGIS 2.2+ for true distance.

WITH p AS (SELECT name, other tags >'amenity' As type,
ST Point (-) : :geography <-> geog As dist m, geog

FROM raleigh pois As p01s
WHERE other Tags @> 'cuisine=>indian'::hstore
ORDER BY dist m LIMIT %)

SELECT p.name, p. type, r.name As road,

r.dist m road::numeric (!0,), p.dist m::numeric(U,)
FROM p, LATERAL (SELECT rr.name, rr.geog <-> p.geog AS dist m road
FROM raleigh roads AS rr WHERE rr.name >

ORDER BY dlsf_m_road LIMIT) AsS r;
name | type | road | dist m road | dist m
———————————————————————————— e EE et e et
Blue Mango | restaurant | West Lane Street | 14.64 | 1059.16
Blue Mango | restaurant | Glenwood Avenue | 16.62 | 1059.16
Kadhambam Spices | | Hatchet Creek Greenway | 111.25 | 19087.63
Kadhambam Spices | | Hatchet Creek Greenway | 112.37 | 19087.63
Sitar | restaurant | Chapel Hill Blvd Service Road | 36.62 | 35408.81
(8 rows)
Time: 45.210 ms
F == @

idx_raleigh_pois_geog Limit Mested Loop

WHAT PLACES ARE WITHIN X-
DISTANCE

Limit results set by distance rather than number of records.
Like KNN, geometry can be anything like distance from a road,
a lake, or a point of interest.

EXAMPLE: GEOGRAPHY WITHIN 1000
METERS OF LOCATION

What are closest fast food joints within 1000 meters. This will
work for PostGIS 1.5+

-— Time: 2.241 ms
SELECT name, other tags->'cuisine' As cuilsine,
ST Distance(pois.geog,ref.geog) As dist m
FROM raleigh pois AS pois, -
(SELECT ST Point (- ,) : :geography) As ref (geoq)
WHERE other tags ©@> 'amenity=>fast food'::hstore
AND ST DWithin (pois.geog, ref.geog,)
ORDER BY dist m;

name | cuisine | dist m
_____________________________ +___________|_______________
Chick-fil-A | chicken | 115.15429719
Quiznos | sandwich | 208.9641767
zpizza | pizza | 246.56944119
Snoopy's | | 851.75116195
Quiznos Sandwich Restaurant | sandwich | 890.35270577
Char Grill | burger | 906.690761706

| |

Bruger's Bagels 997.0456652

(7 rows)

DIVIDE LARGE GEOMETRIES INTO
SMALLER ONES WITH ST_SUBDIVIDE

New in PostGIS 2.2. Works for non-point geometries (only

2D). Second arg is max number of points to allow per divide.

SELECT stusps, ST SubDivide (geom,) AS geom
FROM states B
WHERE stusps IN('TN', 'NC', 'SC', 'GA'");

Before had 4 rows After have 186 rows
A k]
4 ‘s e ol o S -

o [:Fﬁr

NEW POSTGIS 2.3 ST_GENERATEPOINTS

Converts multipolygon/polygon to multpoint - random space
filling the area

SELECT stusps, ST GeneratePoints (geom,) AS geom
FROM states B
WHERE stusps = 'NC';

Before: 1 Multi-Polygon After: 1 multipoint of 1000 points

CLUSTERING GEOMETRIES USING WINDOW
FUNCTIONS: COMING POSTGIS 2.3

e 2.3: ST ClusterKMeans
e 2.3: ST_ClusterDbSCAN

ST_CLUSTERKMEANS: NUMBER BUILDINGS FROM 0-4 BY
PROXIMITY TO EACH OTHER

SELECT name, ST ClusterKMeans (geom,) OVER() AS bucket

FROM raleigh Qons

WHERE name >"'' AND building > !

AND ST DWithin (geom, 'SRID=2264;POINT (2106664 737626)"'::geometry,)
ORDER BY bucket;

Need to add geom column to view name | bucket

__________________________________ _|_________
Wake County Justice Center | 0
Wake County Public Safety Center | 0
Sir Walter Raleigh Hotel | 1

[:::] Capital Bank Plaza | 1
Sheraton Raleigh Hotel | 1
Wake County Office Building | 2
Wake County Courthouse | 2
Kings | 3
The Mahler | 3
Capital Club 16 | 3
CrossFit Invoke | 3
Federal Building | 3
North State Bank | 3
PNC Plaza | 4
First Citizens Bank | 4
(15 rows)

i:: Time: 1.228 ms

ST_CLUSTERDBSCAN: SIMILAR TO KMEANS, BUT USES
DESIRED DISTANCE AND MINIMUM NUMBER ITEMS

Cluster together buildings that intersect each other.

SELECT name, ST ClusterDBSCAN (geom, ,) OVER() AS bucket, geom
FROM raleigh pons

WHERE name > '' AND building > '

AND ST DWithin (geom, 'SRID=2264;POINT (2106664 737626)"'::geometry,)
ORDER BY bucket;

Time: 1.046 ms

Need to add geom column to view name | bucket
__________________________________ +________

Wake County Office Building | 0

Wake County Public Safety Center | 1

Wake County Justice Center | 1

- Wake County Courthouse | 2

Federal Building | 3

First Citizens Bank | 4

Capital Bank Plaza | 5

PNC Plaza | 6

Kings | 7

Capital Club 16 | 7

CrossFit Invoke | 7

North State Bank | 8

The Mahler | 8

Sheraton Raleigh Hotel | 9

Sir Walter Raleigh Hotel | 10

- (15 rows)

PARALLELIZATION OF SPATIAL JOINS AND FUNCTIONS

Will require PostgreSQL 9.6+ and PostGIS 2.3+. Read more:
http://blog.cleverelephant.ca/2016/03/parallel-postgis-
joins.html

Not yet committed to PostGIS repo, go here -
https://github.com/pramsey/postgis/tree/parallel

set parallel tuple cost=
SET max parallel degree=;

http://blog.cleverelephant.ca/2016/03/parallel-postgis-joins.html
https://github.com/pramsey/postgis/tree/parallel

SEGMENTIZE A LINESTRING IN
GEOGRAPHY

PostGIS 2.1+ ST_Segmentize(geography) can create great
circles

GEOGRAPHY SEGMENTIZE VS. GEOMETRY
SEGMENTIZE ON A MAP

From BoundlessGeo docs

http://suite.opengeo.org/4.1/dataadmin/pgBasics/geography.html

SEGMENTIZE IN GEOGRAPHY OUTPUT AS
GEOMETRY WKT

ST Segmentize ('LINESTRING(-118. ,) ': :geography,
))

LINESTRING (-118.4079 33.9434,-118.365191634689 33.9946750650617,
-118.322351004015 34.0460320153076,
...,2.48756947085441 49.0516183725212,2.5559 49.0083)

SEGMENTIZE AND OUTPUT AS GOOGLE
ENCODED LINE

PostGIS 2.2 we have ST_AsEncodedPolyline useful for drawing
on google maps and use in Leaflet.
ST_LineFromEncodedPolyline for getting back a geometry.

SELECT ST AsEncodedPolyline (
ST Segmentize (
TLINESTRING (-118. ,) ': :geography,
) : :geometry,

) ;

ggdnEjpugqUo I}iG} IwjGo IgkG aImlGoaIgmG..~mGskLvmGajL

http://developers.google.com/maps/documentation/utilities/polylinealgorithm

ADDRESS STANDARDIZATION /
GEOCODING / REVERSE
GEOCODING

PostGIS 2.2 comes with extension address_standardizer. Also
included since PostGIS 2.0 is postgis_tiger_geocoder (only
useful for US).

In works improved address standardizer and worldly useful
geocoder - refer to: https://github.com/woodbri/address-
standardizer

https://github.com/woodbri/address-standardizer/tree/develop/src

ADDRESS STANDARDIZATION

Need to install address_standardizer,
address_standardizer_data_us extensions (both packaged with
PostGIS 2.2+). Using json to better show non-empty fields

SELECT ~*

FROM json each text (to json(standardize address('us lex', 'us gaz', 'us rules'

, '300 S.7Salisbury St™, - - - -
'Raleigh, NC 27601")))

WHERE wvalue > '';

key | value

___________ _|_________________
house num | 300

predir | SOUTH

name | SALISBURY
suftype | STREET

city | RALEIGH

state | NORTH CAROLINA
postcode | 27601

(7 rows)

Same exercise using the packaged postgis_tiger_geocoder
tables that standardize to abbreviated instead of full name

SELECT *
FROM json each text(to json (
standardize address('tiger.pagc lex', 'tiger.pagc gaz', 'tiger.pagc rules'
, '300 S. Salisbury St', - - -
'Raleigh, NC 27601")))
WHERE wvalue > '';

key | value

___________ +___________
house num | 300

predir | S

name | SALISBURY
suftype | ST

city | RALEIGH
state | NC
postcode | 27601

(7 rows)

GEOCODING USING POSTGIS TIGER
GEOCODER

Given a textual location, ascribe a longitude/latitude. Uses
postgis_tiger_geocoder extension requires loading of US
Census Tiger data.

SELECT pprint addy(addy) As address,
ST X(geomout) AS lon, ST Y (geomout) As lat, ratin
FROM geocode ('300 S. Salisbury St, Raleigh, NC 27601"',1);

address | lon | lat | rating

300 s Salisbury St, Raleigh, NC 27601 | -78.6404024546499 | 35.7762672906178 | 0
(1 row)

REVERSE GEOCODING

Given a longitude/latitude or GeoHash, give a textual
description of where that is. Using postgis_tiger_geocoder
reverse_geocode function

SELECT pprint addy (addrs) AS padd
array to string(r.street, AS cross streets
FROM reverse geocode (ST P01nt(,)) AS r
, unnest(r.addy) As addrs;

padd | cross streets

304 s Salisbury St, Raleigh, NC 27601 | W Davie St
(1 row)

GDAL CONJOINS WITH POSTGIS AND POSTGRESQL

e Scene 1: PostGIS Raster
e Scene 2: OGR_FDW Foreign Data Wrapper

SCENE 1: POSTGIS + GDAL = POSTGIS RASTER

A long time ago, a crazy man named Pierre Racine had a very

crazy idea: https://trac.osgeo.org/postgis/wiki/WKTRaster and
he got others Bborie Park, Sandro Santilli, Mateusz Loskot,

David Zwarg and others to help implement his crazy scheme.

http://geospatialelucubrations.blogspot.com/
https://trac.osgeo.org/postgis/wiki/WKTRaster

REGISTER YOUR RASTEI(:l)SI= V[\)IéTH THE DATABASE: OUT

You could with raster2pgsqgl the -R means just register, keep
outside of database. Without the -R the data is stored in Db

raster2pgsgl -I -C -R C:/data/nc _aerials/*.tif -F aerials | psql

OR (useful especially if you are on windows to force recursion
of folders). Requires PostgreSQL 9.3+ PostGIS 2.1+

CREATE TABLE dir list(file name text);
COPY dir list FROM PROGRAM 'dir C:\datal\nc aerials*.tif /b /S'
WITH (format 'csv'); -

CREATE TABLE aerials(rid serial PRIMARY KEY, rast raster, filename text);
INSERT INTO aerials(rast, filename)
SELECT
ST AddBand (
NULL: :raster,
d.file _name, NULL::int[]
), d.file name™
FROM dir llSt AS d;

SELECT AddRasterConstraints('aerials', 'rast');
--verify constraints

SELECT srid, scale x, scale y, blocksize x As width,
blocksize y As heilight, pixel types, out db

FROM raster columns

WHERE r tabTe name = 'aerials';

srid | scale x | scale y | width | height | pixel types | out db
—————— B e S et T
2264 | 0.5 | -0.5 | 10000 | 10000 | {8BUI,8BUI,8BUI} | {t,t,t}
(1 row)

CREATE INDEX 1dx aerials rast ON aerials USING gist (ST ConvexHull (rast));
analyze aerials;”

LET'S TILE THE RASTER TO 200X200
CHUNKS RIGHT IN DB

Requires PostGIS 2.1+. ST _Tile, if working on out-db keeps
out-db and very fast.

CREATE TABLE aerials 200 200 (rid serial primary key, rast raster, filename text);
INSERT INTO aerials Z00 200 (rast, filename)

SELECT ST Tile(rast, ") As rast, filename

FROM aerials;

SELECT AddRasterConstraints('aerials 200 200", 'rast');

--verify constraints - -

SELECT srid, scale x, scale {, blocksize x As width,

blocksize y As height, pixel types, out db

FROM raster columns - -

WHERE r tabTe name = 'aerials 200 200';

srid | scale x | scale y | width | height | pixel types | out db
—————— B et T s it e
2264 | 0.5 | -0.5 | 200 | 200 | {8BUI,8BUI,8BUI} | {t,t,t}
(1 row)

CREATE INDEX idx aerials 200 200 rast ON aerials 200 200 USING gist (ST ConvexHull
analyze aerials 200 200;— — 7 - -

CREATE OVERVIEWS RIGHT IN DB

Requires PostGIS 2.2+. This will make in-db raster from out-
db so might take a while. Took 8 minutes for my aerials table
that had 30 10000x10000 raster links.

SELECT ST_CreateOverview('aerials'::regclass, 'rast',),

st createoverview

0 4 aerials
CREATE INDEX idx o 4 aerials rast ON o 4 aerials USING gist (ST ConvexHull (rast));

SELECT srid, scale x, scale y, blocksize x As width,
blocksize y As height, pixel types, out db
FROM raster columns

WHERE r table name = 'o 4 aerials';
srid | scale x | scale y | width | height | pixel types | out db
—————— o -
2264 | 2 | -2 | 10000 | 10000 | {8BUI,8BUI,8BUI} | {f,f,f}

(1 row)

RETURN AN AREA: 500 FEET AROUND US
Project to same spatial ref as raster (2264 NC State Plane ft)

SELECT ST AsPNG (ST Resize (ST Union (ST Clip(rast, geom)), ,)), count (*)
FROM aerials 200 200 AS a, -
ST EXpand (
- ST Transform (ST SetSRID (ST Point (- ,),),
-), T70) As geom

WHERE ST Intersects(a.rast,geom);

Using aerials: 4 secs (1 row), aerials_200_200: 5.9 sec (120 rows) Using o_4_aerials resize 0.2, 2000 ft - 5.7 secs

o_4_aerials resize 0.5 (980ms 1 row)

SCENE 2: POSTGRESQL + GDAL ~ POSTGIS = OGR_FDW
POSTGRESQL FOREIGN DATA WRAPPER

5 years ago I asked, https://trac.osgeo.org/postgis/ticket/974
and someone finally did it. It was slicker than I ever imagined.

https://trac.osgeo.org/postgis/ticket/974

DATA WRANGLING WITH OGR_FDW

If you have all sorts of data of both a spatial and non-spatial
flavor to tame, make sure you have ogr_fdw foreign data
wrapper in your tool belt.

e For windows users, it's part of PostGIS 2.2 bundle on
application stackbuilder.

e For CentOS/Red Hat/Scientific etc, it's available via
yum.postgresql.org

e For others, if you have PostGIS with GDAL support, just need
postgresqgl dev package to compile. Download the source
https://github.com/pramsey/pgsql-ogr-fdw

https://github.com/pramsey/pgsql-ogr-fdw

WHY IS OGR_FDW SO SEXY?

You have the combined power of GDAL and PostgreSQL
working seamlessly together. So many kinds of data you can
query and take advantage of PostgreSQL functions and any

extension functions and types such as PostGIS, hstore, built-in
json.

|_:_| %, Foreign Data Wrappers (1)

* S p re a d S h e ets - E---Dﬁr}f:iign Servers (6)
e ODBC datasources o e
e OSM files (O SM , PB F) ::[:;:[nﬁ“"‘"”d
e ESRI Shapefiles e
o

Many more

ENABLE IT IN YOUR DATABASE

CREATE EXTENSION ogr fdw;

LINK IN A WHOLE FOLDER OF ESRI
SHAPEFILES AND DBASE FILES

CREATE SERVER svr ShP FOREIGN DATA WRAPPER ogr fdw
OPTIONS (datasource 'C:/fdw data/gisdata’, -
format 'ESRI Shapefile' -

) ;

CREATE SCHEMA shps;

-- this is a PostgreSQL 9.5 feature
IMPORT FOREIGN SCHEMA ogr all

FROM SERVER svr shp INTO shps;

\dE shps.*

List of relations
Schema | Name | Type | Owner
———————— e et et e
shps | airports | foreign table | postgres

shps | nbi | foreign table | postgres
(2 rows)

QUERY YOUR SHAPE FILES LIKE REGULAR
OLD TABLES

SELECT locid, ST AsText (geom) AS wkt
FROM shps.airportTs

WHERE locid ='"'JFK';

locid | wkt
_______ _|__
JFK | POINT (-73.7789255555556 40.6397511111111)

OGR_FDW NOW UPDATEABLE IF GDAL
DRIVER ALLOWS WRITE

Version 1.0.1 brought IMPORT FOREIGN SCHEMA, latest in
master branch supports updating, ability to include subset of
columns, and detect srid

Check out the code and test: Download the source
https://github.com/pramsey/pgsql-ogr-fdw

Windows users, winnie builds whenever master changes -
http://postgis.net/windows_downloads/, look in extras folder
for your PostgreSQL version - e.g 9.5 64-bit would be in pg9.5
extras folder and called ogrfdw-pg95-binaries-1.0w64gcc48.zip

https://github.com/pramsey/pgsql-ogr-fdw
http://postgis.net/windows_downloads/

DO AN UPDATE/INSERT/DELETE TO SHAPE
FILE AS IF IT WERE A LOCAL TABLE

UPDATE shps. alrports
SET geom = ST SnapToGrld(geom

)
WHERE locid = '"JFK' RETURNING locid, ST AsText (geom) As wkt;
locid | wkt
_______ _I____________________________
JFK | POINT (-73.77893 40.63975)
(1 row)
UPDATE 1

INSERT INTO shps.airports(locid, geom)
SELECT 'ROO', geom

FROM shps. alrports

WHERE locid = 'BOS' RETURNING locid,ST_AsText(geom);
locid | st astext

_______ _l__

ROO | POINT (-71.006416660660667 42.3629722222222)
INSERT 1

DELETE FROM shgs alrports
WHERE locid = 'ROO'

OSM FILES

-- data from https://mapzen.com/data/metro-extracts/
CREATE SERVER svr osm
FOREIGN DATA WRAPPER ogr fdw
OPTIONS (datasource 'C:/fdw data/raleigh north-carolina.osm.pbf', format 'OSM');
CREATE SCHEMA IF NOT EXISTS osm; o
IMPORT FOREIGN SCHEMA ogr all
FROM SERVER svr osm INTO Osm;

\dE osm.*

List of relations
Schema | Name | Type | Owner
———————— -
osm | lines | foreign table | postgres
osm | multilinestrings | foreign table | postgres
osm | multipolygons | foreign table | postgres
osm | other relations | foreign table | postgres
osm | points | foreign table | postgres
(5 rows)

-— requires CREATE EXTENSION hstore;

CREATE TABLE raleigh pois AS

SELECT osm id, name, geom::geography As geog, 1s in,
place, other tags::hstore -

FROM osm.points;™

CREATE TABLE raleigh roads AS

SELECT osm id, name, geom::geography As geog,
other Tags::hstore

FROM osm.Tines

WHERE highway > '';

LINK EVEN NON-SPATIAL LIKE MS ACCESS
DATABASE TABLES AND QUERIES

CREATE SERVER svr northwind FOREIGN DATA WRAPPER ogr fdw
OPTIONS (datasource 'C:/fdw data/northwind.mdb', -
format 'ODRC' -

) ;
CREATE SCHEMA IF NOT EXISTS northwind; . .
-- will 1link in all tables and queries starting with Ord

IMPORT FOREIGN SCHEMA "Ord"
FROM SERVER svr_northwind INTO northwind;

\dE northind.*

List of relations

Schema | Name | Type | Owner
——————————— -
northwind | order details | foreign table | postgres
northwind | order details extended | foreign table | postgres
northwind | order subtotals | foreign table | postgres
northwind | orders | foreign table | postgres
northwind | orders qgry | foreign table | postgres

(5 rows)

The schema part is case sensitive, has to match source

EVEN SPREADSHEETS

Each workbook is considered a server and each sheet a table

CREATE SERVER svr fedex FOREIGN DATA WRAPPER o

OPTIONS (datasourcCe 'C:/fdw data/Fedex2016.xls
format 'XLS'
- link only 1 spreadsheet preserve headers

IMPORT FOREIGN SCHEMA ogr all LIMIT TO (Fedex

FROM SERVER svr fedex INTO public OPTIONS

SELECT * FROM fedex rates 1ip;

Before

fid | Type | Weight | Zone A | Zone B | Zone C
————— et i ettt
2 | IntlPriority | 0 | 40.25 | 41.5 | 43

3 | IntlPriority | -1 | 66.25 | 67.75 | 62.25

4 | IntlPriority | -2 | 70.25 | 73.5 | 65.75

-— unpivot a subset of columns and keep others

WITH fkv AS

SELECT f£."Type" As t e,
eac hstore

from fedex rates ip AS

."Weight" As wel
'{fld Type, Weight

gr fdw

Rates IP)
(launder column names

")

'false

| Zone D | Zone E | Zone F | Z
Fomm e e +—-
54.75	116.5	52
74.25	132	68
77.25	156.25	73

(requires CREATE EXTENSION hstore;

ht,
?'::text[]) AS kv

SELECT type, weight, (kv) key AS zone, (kv).value::numeric As price
FROM fkv;
After
type | weight | zone | price

—————————————— o

IntlPriority | 0O | Zone A | 40.25

IntlPriority | O | Zone B | 41.5

IntlPriority | 0O | Zone C | 43

IntlPriority | O | Zone D | 54.75

EVEN CSV FILES

You can point at a single CSV file or a whole folder of CSV files.
Each file is considered a table.

Folder of CSV files

CREATE SERVER svr census FOREIGN DATA WRAPPER ogr fdw
OPTIONS (datasource 'C:/fdw data/census', -
format 'CSV' -

14

IMPORT FOREIGN SCHEMA ogr all _
FROM SERVER svr census INTO public;

Single file

CREATE SERVER svr census income FOREIGN DATA WRAPPER ogr fdw

OPTIONS (datasource 'C:/Tdw data/census/income.csv',
format 'CSV' -

14

IMPORT FOREIGN SCHEMA ogr all .
FROM SERVER svr census income INTO public;

EVEN OTHER RELATIONAL DATABASES

Format for SQL Server
'ODBC:your_user/your_password@yourDSN,tablel,table2’.
ODBC can be slow with a lot of tables (more than 150) so filter
list if you have over 200 tables

CREATE SERVER svr sqglserver FOREIGN DATA WRAPPER ogr fdw
OETIONS fdata§our6e '"ODBC:pguser/whatever@MSSQLTest,dbo.Issuelog,dbo.IssueNotes',
ormat 'ODBC

)
CREATE SCHEMA IF NOT EXISTS ss;
IMPORT FOREIGN SCHEMA "dbo."
FROM SERVER svr sqglserver INTO ss;

\dE ss.*
List of relations
Schema | Name | Type | Owner
———————— e
Ss | dbo _issuelog | foreign table | postgres

Ss | dbo issuenotes | foreign table | postgres

FIN

BUY OUR BOOKS
HTTP://WWW.POSTGIS.US

http://www.postgis.us/

