PostGIS 2.0 the new stuff

Regina Obe and Leo Hsu

.

PostGIS Development Team

What have they been doing for 2.0? (Red are new to PSC)
Project Steering Committee:
Mark Cave-Ayland — bug fixing, spatial index, loader, cleanup
Chris Hodgson — bug fixing, build bot, site maintenance, incubation due diligence
Paul Ramsey (Chair) — bug fixing, nd-Index support, typmod, loader
Regina Obe — tiger geocoder, ST_AsX3D, ST_ConcaveHull,
management functions, QA
Sandro Santilli - topology, all new geos functions, raster initial framework and low level api,
overall PostGIS cleanup

Core Team working on PostGIS 2.0 — red are new to team in 2.0 Dev Cycle
Jorge Arévalo - Raster intersection, intersects,other stuff, GDAL PostGIS raster driver
Nicklas Avén - 3D spatial relationship and measurement functions
Olivier Courtin — 3D output, parsing,new 3D type serialization, lots of 3D related functions
Mark Leslie — shape file gui loader cleanup, ability to add multiple files
Mateusz Loskot — raster low level api functions, the raster loader
Bborie Park — Raster, all image output functions, many stat functions,

many processing, too many to count
Pierre Racine — Raster architect, the man with the plan, the vision, and will to make it happen.
He's all over the raster space.

Other contributors:

Jeff Adams — numerous fixes, enhancements to loader/dumper

Leo Hsu — helping with geocoder, testing, PostGIS windows packaging.

Bryce Nordgren — numerous patches to raster and API strategizing

Andrea Peri — QA topology and other parts of PostGIS, contributed several topology functions
Kashif Rasul — many documentation corrections, ST _GeomFromJSON (to be integrated)
David Zwarg - Raster miscellaneous functions

PostGIS 2.0 ZOCKS

your world!

« Easier management

« Better SQL/MM compliancy
 New geometry analysis functions
« Topology — SQL/MM

« Real 3D with surfaces and spatial
relationships

« Seamless raster / geometry

 TIGER - Loader, Geocoder , Reverse
Geocoder , Tiger 2 PostGIS Topology Loader

PostGIS 2.0 ROCKS
9.1 Specific features
CREATE EXTENSION

CREATE EXTENSION - the new way to install
(still in experimental mode /extensions folder of trunk)

Also available in PostgreSQL - 9.1 PostGIS 2.0.0 Windows experimental builds

(The packaging of the components will probably change in final release time)

— CREATE EXTENSION postgis_core;
— CREATE EXTENSION postgis_raster;
— CREATE EXTENSION postgis topology;

[- T = "% Extensions (4)

[- plpasgl

imen ----- postgis_core
Pbe postgis_raster
bl L e postais_topaology

Crawerd dorhank
! phichs Extension Cwner Comment
o 1 postois_core postares postais geometry and geography sql-mm spatial types and functions

i postgis_raster postgres postgis raster spatial types and functions
e postgis_topology postgres postgis topology spatial types and functions

E gl plpgsql postares PL/paSQL procedural language

PostGIS 2.0 ROCKS
9.1 Specific features
KNN GIST

Planned before release not yet committed.

PostGIS 2.0 XOCKS

Easier Management

In the beginning (pre 2.0)

CREATE TABLE .. Without the
geometry column

AddGeometryColumn (. .what were
those args?)

DropGeometryTable (. .)

and if you screwed up:
SELECT populate geometry columns(..);

PostGIS 2.0 XOCKS

Easier Management

* |In PostGIS 2.0 geometry columns is no
longer a table, but a view that reads from

system catalogs.

* geometry columns can now be created using
type modifiers (typmod) similar to what we
have with geography columns

* The big deal is that geometry columns can
no longer be updated directly and is always
in synch with the table definitions.

PostGIS 2.0 XOCKS

Easier Management

We have this for geography in introduced in 1.5, now geometry gets a face lift
too.

CREATE TABLE buildings (gid SERIAL PRIMARY KEY, geom
geometry (MultiPolygon, 26986))

CREATE TABLE testpolyhed(gid SERIAL PRIMARY KEY, geom
geometry (PolyhedralSurfaceZ, 26986));

CREATE TABLE mixed3d(gid SERIAL PRIMARY KEY, geom
geometry (GeometryZz, 26986));

CREATE TABLE mixedZ2d(gid SERIAL PRIMARY KEY, geom
geometry (Geometry, 26986));

PostGIS 2.0 XOCKS

Easier Management
In PostGIS 2.0 you can use the old way or
the one step / ANSI SQL way:

CREATE TABLE myg(gid serial
primary key, geom geometry (Point,
20980) ;

ALTER TABLE myg ADD COLUMN
geom 4326 geometry (Point, 4320);

DROP TABLE myg;

PostGIS 2.0 XOCKS

Easier Management

In PostGIS 2.0 old way has new tricks. It
can be constraint based or typmod based.
Defaults to typmod if not specified

To get old constraint way: use new
use typmod and set it to false.

AddGeometryColumn (schema name,
table name, column name, 1integer
srid, geomtype, dimension,

use typmod) ;

PostGIS 2.0 XOCKS

Easier Management

To get old constraint way: use new
use typmod and set it to false.

SELECT AddGeometryColumn ('public',

'myg', 'mygeom', 2249, 'POINT', 2,
false) ;

PostGIS geometry columns is a
view means easier maintenance

Reads constraints from system catalogs if constraint based and type from
system catalogs if typmod based.

SELECT f table schema, f table name, f geometry column,
coord dimension, srid, type

FROM geometry columns

WHERE f table name IN('buildings', 'testpolyhed');

f table schema | f table name | f geometry column | coord dimension srid | type

———————————————— et et e e i
public | buildings | geom | 2 | 26986 | MULTIPOLYGON

public | testpolyhed | geom | 3 | 26986 | POLYHEDRALSURFACE

PostGIS 2.0 XOCKS

What about views?

If built with typmod and no qualifier registers
correctly:

CREATE VIEW v myg AS
SELECT * FROM mygq;

constraint-based or geometry function outputs you
need to cast for it to register correctly in

geometry columns:
CREATE VIEW v myg AS
SELECT *,

ST Transform(geom,2249) ::geometry (Point,
2249) As geom 2249;

PostGIS 2.0 XOCKS

Easier Management
oader can load multiple files

PastGIS Connection

Username: postgres

Password: LT T T IIIT

Server Host: localhost

Database: postgis20_sampler

Test Connection... Connection succeeded.

Shape File

Add File

Shapefile

Schema Table Geometry Column SRID Mode Rm
Chprojects\postgis\data\world_borders.shp public world_borders geomn 4326 Create

Chprojects\postgis\dataplace.shp public place geom 4326 Create

Options... | |

| l Cancel

Import Log
I 1 S LSS

Cennection succeeded,
pgui_action_open_file_dialog called.
pqui_action_open_file_dialog called.

PostGIS 2.0 XOCKS

FGDB2PostGIS
PostGIS2FGDB
What is this?

You didn't see this slide

Paul is hiding in the garage working on command line
loader / dumper for ESRI's new fangled FGDB database
format

Requires newest GDAL lib and ESRI FGDB API

PostGIS 2.0 20CKS
SQL/MM compliance

ZM geometries now output more compliant but ST _GeomFromText will accept old and
new formats. We have new SQL/MM types: PolyHedralSurface and TINS

POINTZM(1 2 3 4)

POINTZ (1 2 3)

TRIANGLE ((O 2, 10 4, 12 0, 0 2))

TRIANGLEZ ((O 2 1, 10 4 1, 12 0 1, 0 2 1))

TIN(((O 2, 10 4, 12 0, 0 2)),((0 2, -2 -6, 12 0, 0 2)),
((0 2, 10 4, 58, 0 2)))

POLYHEDRALSURFACEZ(((O O O, 0O 1, 01 1, 01 0, OO0 0)),
(¢<0 00, 010, 1210, 106060, 0O00)),

((<0 00,1060, 101, 001, 00 0)),

(¢210, 111, 101, 100, 1 1 0)),

PostGIS 2.0 XOCKS

More Functions for Geometry
We’ll demonstrate:
ST FlipCoordinates
ST ConcaveHull
ST Snap
ST Split

PostGIS 2.0 XOCKS

ST_FlipCoordinates

Your world is on its side, no problem, just flip it.

SELECT ST ASText (

ST FlipCoordinates (geom)
) as geom flipped
FROM ST GeomFromText ('LINESTRING (762091
2920414,762588 2920692,762676 2920779) Y,26986)
As geom;

-—— geom flipped --
LINESTRING (2920414 762091,2920692 762588,2920779
762676)

PostGIS 2.0 XOCKS

Vacuum Seal: ST ConcaveHull

Approximation of geometry encasing a set of geometries. Areais
always smaller or equal to area of ConvexHull and larger than area
of an areal geometry

ST ConvexHull (geom)

90% target allow holes

ST ConcaveHull (geom, 0.90, true)

Same as 100% 99% area target convex
Concave Hull

....::.:...._‘
8- 9 g% Vigee
®oo0 c0ces 00
ST ConcaveHull (geom, 0.99) St qettllite g0
— e e ee08®
Oy
.':'..o"'o’...._'..'
PR T PN-....:
..’0. ¢ ° :.0 '... % o%e = =1 .="... %
Sgo_o00e o *oo0 _0000e, °0 ec08® Y
e %o, o, % S.e% e °, b lg®~:9
e, ° ecsed e % o, LA oo '.'Ooooi'."".o"--. 3
°° 0o "®%00,, -« o, :.Oo = Yol 20 erg 020 .'j'
0 ‘oo .: ., @ :: - hi g 2 T L
'0.,:. e _a j ®000g_ o ®_ 0
2% o s Sg_o 0,
.:::o ':’oo: :::::. :.oo:
e ° > e o0
DI ®e 000000 o °.e e % %cc00® o ¢
-:L o0 o0°° 4
)

. L]
© O R s
e
o® @
b TR TR

@
@
Yoocoee®’

PostGIS 2.0 XOCKS
ST Snap

Geometries don't quite line up, no problem,just snap them. Below
returns geometry 2 snapped to tolerance of distance + 2 units.

Dark border represents new location of 2 after snapping.

SELECT ST_Snap(p2.geom,p1.geom, ST_Distance(p1.geom, p2.geom) + 2) FROM polys
AS p1 CROSS JOIN polys As p2

WHERE p1.id =1 and p2.id =2;

1

PostGIS 2.0 XOCKS
ST Split

Split a geometry with a line string. This one splits polygon into 3 pieces
SELECT (result) .path[l], (result) .geom

FROM (
SELECT ST Dump (ST Split (poly,line)) As result
FROM
ST Buffer (
ST GeomFromText ('LINESTRING (10 20, 30 40)"),
2, 'endcap=flat') As poly
CROSS JOIN
ST GeomFromText ('LINESTRING (10 20, 30 40, 20 10)') As line

) As foo;

PostGIS 2.0 XOCKS

and more ...

ST MakeValid

ST AsLatLonText

ST IsValidDetail

ST OffsetCurve

ST RemoveRepeatedPolnts
ST SharedPaths

ST AsRaster - converts a postgis geometry to a postgis raster. Part of
postgis raster module — more on that later.

ST GeomFromJSON — create geometry from JSON input. Work done by Kashif
Rasul (not yet committed), but should make it into PostGIS 2.0 if committed
soon. Refer to ticket: for status details

PostGIS 2.0 ROCKS
Better 3D Support

New Types: TRIANGLE, TIN,
POLYHEDRALSURFACE

New Functions: Many existing extended to support
new types. New functions specific for 3D.

Spatial Index: nd-Index

PostGIS 2.0 ROCKS
New 3D Relationship Functions

Only &&& has support for TINS
* ST 3DDistance / ST 3DMaxDistance

* ST 3DIntersects

* ST 3DClosestPoint

* ST 3DDWithin

* ST 3DShortestlLine/LongestLine

* &&& (3D overlaps bounding box
operator)

PostGIS 2.0 ROCKS
New 3D Input/Output Functions
* extended to support 3D

T _AsGML*

T AsX3D

T GeomFromGML*
T _GeomFromEWKT*
T AsText”

T _AsEWKT™

O 0O 0o o nu o

PostGIS 2.0 ROCKS
Create Table for 3D geometries

CREATE TABLE test3d(gid SERIAL
PRIMARY KEY,
geom geometry (Geometryz,0));

CREATE INDEX 1dx test3d geom gist3d
ON test3d USING gist (geom
gist geometry ops nd);

PostGIS 2.0 ROCKS
Triangular Irregular Network (TIN)
2D, 3D, 3DM

INSERT INTO test3d(geom)
VALUES('TINZ(((1 2 3,4 5 06,7 8 9,1 2 3)),
((10 11 12,13 14 15,16 17 18,10 11 12)),
((19 20 21,22 23 24,25 26 27,19 20 21)))'::geometry)

INSERT INTO test3d(geom)
VALUES ('TRIANGLEZ ((0O O -1,
-5 -5 -5,-4 -4 -4,0 0 -1))'::geometry);

PostGIS 2.0 ROCKS
Polyhedral Surface

INSERT INTO test3d (geom)
VALUES (' POLYHEDRALSURFACEZ (

((0 0 0,0 0 5,0 15 5,0 15 0, 0 O 0)),

((0 0 0,0 15 0,10 15 0,10 O O, O O 0)),
((0 0 0,10 0 0,10 O 5,0 0 5, O O 0Q)),

((10 0 0,10 15 0,10 15 5,10 0 5, 10 0 0)),
((0O 15 0,0 15 5,10 15 5,10 15 O,

0O 15 0))) '"::geometry

PostGIS 2.0 ROCKS
&& vs. &&&

SELECT ST ASEWKT (a.geom) As awkt,
ST ASEWKT (b.geom) As bwkt,
a.geom && b.geom As 1nt2d,
a.geom &&& b.geom As 1int3d
FROM test3d As a CROSS JOIN test3d Db
WHERE a.geom && b.geom AND NOT (a.geom &&& b.geom) ;

awkt bwkt int2d int3d
TRIANGLE ((0O O ... POLYHEDRALSURFACE (((0 O... T f

POLYHEDRALSURFACE (((0O O O0... TRIANGLE((O O -1... t f

PostGIS 2.0 ROCKS
ST _AsGML (version 3 only)

SELECT gid, ST AsGML (3, geom) As ogml FROM test3d;

-— result -

1| <gml:PolyhedralSurface><gml:polygonPatches>
<gml:PolygonPatch>...</gml:PolyhedralSurface>

2|<gml:Tin><gml:trlanglePatches>
<gml:Triangle>...</gml:Triangle>...

</gml:trianglePatches></gml:Tin>

PostGIS 2.0 ROCKS
ST AsX3D

SELECT gid, ST AsX3D(geom) As ox3d FROM test3d;

-— result -

1

| <IndexedFaceSet coordIndex='0 1 2 3 -1 4 5 6 7 -1 8 9
10 11 -1 12 13 14 15 -1 16 17 18 19'><Coordinate point='0
O00O0O5015 50150000015 0 10 15 0 10 0 0 O 0 O
10 0 0 10 0O 50 0 510 0 0 10 15 0 10 15 5 10 0 5 0 15 O
0 15 5 10 15 5 10 15 0'" /></IndexedFaceSet>

| <IndexedTriangleSet 1ndex='0 1 2 3 4 5 6 7
8'><Coordinate point='1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26
27'/></IndexedTriangleSet>

PostGIS 2.0 ROCKS
3D Viewers

Still growing space — No direct support for PostGIS new types yet

GvSig — preliminary 3D support in gvSig 1.11, but not for new types

Using ST_AsX3D can utilize X3D viewers for new types like TIN and Polyhedral

Surfaces — Viewers supporting 3D

FreeWrl -- (supports Linux, Mac, Windows)
and Iphone in development

InstantReality -- (Windows, Linux,
Mac)

X3Dom — X3D embedded on web pages piggy backs

on WebGL and HTML5 support built-into FireFox 4+ and Google Chrome so
no plugins needed for these. For IE uses InstantReality or Flash.

Vivaty Studio (originally FluxPlayer) — (now owned by Microsoft) —
questionable what Microsoft plans for it.

Many others: http://www.web3d.org/x3d/vrml/tools/viewers_and_browsers/

PostGIS 2.0 ROCKS
Polyhedral in x3dom html

POLYHEDRALSURFACEZ (
(¢(0 0 0,0 05,015 5,0 15 0, 0 O

0)),
(¢(0 0 0,0 15 0,10 15 0,10 0 0, O O

0)),
(¢<0 0 0,10 0 0,10 O 5,0 0 5, 0 O

0)),

(¢(10 0 0,10 15 0,10 15 5,10 0 5, 10
0 0)),

((0 15 0,0 15 5,10 15 5,10 15 O,

0 15 0)))

<IndexedFaceSet

coordIndex='0 1 2 3 -1 4
56 7 -189
10 11 -1 12 13 14 15
-1 16 17 18 19'>
<Coordinate point='0 0 0 0 0 5 0 15 5 O
15 0 0 O
O 015 0 10 15 0 10 0 0 O O O 10 O
O 10 0 50 05 10 0 0 10 15 0 10 15 5
10 0O 5 0 15 0
0 15 5 10 15 5 10 15 0"
/></IndexedFaceSet>

PostGIS 2.0 ROCKS
Tiger Geocoder

* Integrated in Documentation

» Upgraded to work with Census Tiger 2010

» Cross Platform Loader script generator to load state by state
data

* Reverse Geocoder

» Geocoder revised to allow designating max matches to
return

» Geocoder revised to offset to correct side of street

 Index helper functions to generate missing indexes for tables
« Many improvements in speed and accuracy

* TIGER to PostGIS topology loader

PostGIS 2.0 ROCKS
Tiger Geocoder
Reverse Geocode

SELECT pprint addy(r.addy[l]) As prim addr,
array to string(street, ',') As cross streets
FROM reverse geocode (

ST SetSRID(
ST Point (-71.357682,42.455041)
,4326)) As r;

prim addr
cross_streets

15 Grant St, Concord, MA 01742 Sudbury Rd

PostGIS 2.0 ROCKS
Tiger Geocoder
Geocode

SELECT pprint addy((g) .addy) As addr
, ST X (ST SnapToGrid((g) .geomout,0.00001)) As lon
, ST Y (ST SnapToGrid((g).geomout,0.00001)) As lat
, (g) .rating

FROM geocode('1l5 Grant Street, Concord, MA 01742',1)

As gy

addr

15 Grant St, West Concord, MA 01742 -71.35769 42.45506
0

PostGIS 2.0 ROCKS
TIGER meets
PostGIS Topology

-- Create Boston Topology in MA State Plane Feet with 0.25 ft tolerance
SELECT topology.CreateTopology('topo boston',
2249,0.25);

-- Load in Tiger edges/faces/nodes bounded by Place: Boston
SELECT tiger.topology load tiger (

'topo boston', 'place', '2507000");

-- Let's see what we have —
SELECT topology.TopologySummary ('topo boston');

topologysummary

Topology topo boston (15), SRID 2249, precision 0.25
20576 nodes, 31597 edges, 11109 faces, 0 topogeoms in O
layers

PostGIS 2.0 ROCKS
Topology / SQL/MM

What is the difference between the topological
model and geometry model?

Geometries are denormalized representations of
space where objects that share edges, nodes, or
faces each have a redundant copy of shared
element.

Topology is a normalized representation of space —
shared edges,nodes,faces are not redundant .

for details

PostGIS 2.0 ROCKS
Topology / SQL/MM

Benefits of Topological Based systems

Consistent editing / updating — update one
edge and all geometries sharing that edge
change also. Simplification of a topology
would not result in edges that used to be
shared no longer being shared.

Reduced Storage

Explicit Spatial Relationships — gets around
some tolerance issues.

PostGIS 2.0 ROCKS
Topology / SQL/MM

Example Popular Topological based systems:

US Census Topologically Integrated Geographic Encoding
and Referencing (TIGER):

consists of faces, edges, nodes, (something else — lets call them
features)

OpenStreetMap: consists of nodes, ways, relations, and tags

PostGIS 2.0 ROCKS
Topology / SQL/MM

Topology schema: contains all topology functions. Many
functions are SQL/MM and prefixed with ST. Non-SQL/MM are
not prefixed.

For each topology created, a new schema with same name is
created that contains:

edge — linestrings connect at nodes

face — just holds mbr, but defines polygons. Edges separate
faces.

node — The joints of topology — edges begin / end at nodes

relation — defines relationship between topogeometry and other
elements in topology.

New data type — TopoGeometry a normalized geometry aware of
its shared neighbors within a topology.

PostGIS 2.0 ROCKS
Topology / SQL/MM

Topology Metadata tables
topology.topology — registry of all topologies in database

topology.layer - listing of feature tables and which topology
defines the elements of the topogeoms in the table.

PostGIS 2.0 ROCKS
Topology

Over 50 functions in PostGIS topology
Management:

CreateTopology

DropTopology

ValidateTopology

TopologySummary

AddTopoGeometryColumn etc.
Processing:

Many SQL/MM compliant, several non-SQL/MM but deemed needed and
several more planned

Output:
AsGML
geometry

Planned: ToTopoGeom — will convert a PostGIS geometry to a
topogeometry

PostGIS 2.0 ROCKS
ValidateTopology

Highlights problems
SELECT * FROM topology.ValidateTopology ('topo boston');

—— got no errors -

For suffolk:
SELECT * FROM topology.ValidateTopology('topo suffolk');

error | idl | id2
___________________ T
coincident nodes | 81045651 | 81064553
edge crosses node | 81045651 | 85737793
edge crosses node | 81045651 | 85742215

edge crosses node | 81045651 | 620628939
edge crosses node | 81064553 | 85697815
edge crosses node | 81064553 | 85728168
edge crosses node | 81064553 | 85733413

PostGIS 2.0 ROCKS

AddTopoGeometryColumn
LINEAL Layer

CREATE SCHEMA boston;

CREATE TABLE boston.roads (
tlid bigint PRIMARY KEY,
fullname wvarchar (100),
mtfcc varchar (b)) ;

SELECT topology.AddTopoGeometryColumn (
'topo boston',
'"boston', 'roads', 'topo', 'LINE');

PostGIS 2.0 ROCKS
AddTopoGeometryColumn

Resulting table structure looks like this:
CREATE TABLE boston.roads (

tlid bigint NOT NULL

, fullname character varying (100)

, mtfcc character varying(5)

, topo topology.topogeometry

, CONSTRAINT roads pkey PRIMARY KEY (tlid)

, CONSTRAINT check topogeom CHECK

((topo) .topology 1d = 15

AND (topo) .layer 1d = 5 AND (topo) .type = 2));

PostGIS 2.0 ROCKS

CreateTopoGeom
LINEAL Features

CreateTopoGeom (topology, topotype, layer id, array{id, elementtype})
CreateTopoGeom('topo boston', 2,5,array{edge id, 2})
topotype: (multi)point=1l, (multi)linestring=2, (multi)polygon=3, collection=4
elementtype: node=1, edge=2, face=3

INSERT INTO boston.roads (tlid
, fullname, mtfcc, topo)
SELECT edge 1i1d, fullname, mtfcc,
topology.CreateTopoGeom ('topo boston'
’ ’
, ("{{" || edge 1id::text ||
',2}}'")::topology.topoelementarray)

FROM
(SELECT DISTINCT e.edge 1d
, fullname -
, mtfcc
FROM tiger data.ma edges AS m
INNER JOIN topo boston.edge As e
ON m.tlid = e.edge 1d
WHERE m.mtfcc LIKE 'S%') As te;

PostGIS 2.0 ROCKS
Output: As geometry

-- The topogeom can be cast to geometry type
-- SO can use most geometry functions

SELECT fullname, topo,

ST AsText (topo::geometry) As atext
FROM boston.roads

WHERE fullname > '"' LIMIT 1;

fullname | topo | atext

__________ _|______________________l___________________________
Rice St | (15,5,1,2) | LINESTRING (780534.5

2929864.25,
780560 2929839.5,
780581 2929798.75)

PostGIS 2.0 ROCKS

AddTopoGeometryColumn
AREAL Layer

| loaded a table called boston.nei with a geom column
that holds one organization's vision of where the
boundaries of Boston neighborhoods are

which in theory were drawn along street segments

SELECT topology.AddTopoGeometryColumn (
'topo boston',
'boston', 'nei', 'topo', 'POLYGON') ;

Wouldn't it be fun to take this and create
topo geoms of it using Census idea of where the street centerlines
are?

PostGIS 2.0 ROCKS

TopoElementArray Agdg
AREAL Features

Can be formed by aggregating faces

UPDATE boston.nel
SET topo =
topology.CreateTopoGeom ('topo boston'

, foo.bedges)
FROM (SELECT n.gid,
topology.TopoElementArray Agg (ARRAY[f.face 1d,3])
As bedges o -
FROM boston.nei As n
INNER JOIN topo boston.face As f ON
n.geom && f.mbr o
WHERE ST Covers (n.geom,
topology.ST GetFaceGeometry ('topo boston',
f.face 1id)) o
o GROUP BY n.gid) As foo
WHERE foo.gid = boston.nei.gid;

PostGIS 2.0 ROCKS

But data sets are from different organizations
Boundaries approximate simplifications

Charlestown East 5_?*3_10'?.\.

Allston/Brightan A e §
“Central @

Back Bay/Baacon Hill "'f';.; e]
FenwawKenmnre S,E'um anmn
> SouthEnd TPy

JamawaF’Jaian uy o r:heﬂef;’

‘-'-.
—'_"\)

West Roxbury Roslindale !

Hyde Fark
4

geom: Boundaries drawn and lines simplified

to be lighter and more appealing
they really don't follow street centerlines

Charlestown EaStBDS}_D_n
af W
1'1- .F'_“‘h-g'—’";_—.- .- F ke &
B e =
AllstaniBrighton \ A
Tentral &

Back Bay/Beacon Hill

g {
Fenway/kenmare LT HOSINE

o,
'-'-r == SDuthJEnd y

i =
Jamaica Fglamﬁqibury ,rj ﬁ:haﬁtﬁ _;: -

s fll |
*w

£
.

Wes{t RoXIUY poslindale :"‘ tt _\\
i e 1
r \'x-.__.'f-_.-_ ‘ B.{J'ﬂp |
. -".-_
i~ d
.'; 1 \ l_.-
4 - -
n,‘“__s 1 Hyde Park "L :-'r;\,f,‘*
¢ :'-'o h";..___s"
-!':_ IJ.- [
L '--I
- " L
L !

topo: Formed from faces of Tiger data
which are formed from edges

like street center lines. We lost all faces not

completely covered by a neighborhood

PostGIS 2.0 ROCKS

CreateTopoGeom
AREAL Features

Compensate for imperfect data

UPDATE boston.nei
SET topo =
topology.CreateTopoGeom ('topo boston'

’

, %oo.bedges)

FROM (SELECT n.gid,
topology.TopoElementArray Agg (ARRAY[f.face 1d,3]) As bedges
FROM boston.nei As n - N
INNER JOIN topo boston.face As f ON n.geom && f.mbr
WHERE -
ST Covers (n.geom, topology.ST GetFaceGeometry('topo boston',
f.face 1id)) - -
OR
(ST Intersects(n.geom,
topology.ST GetFaceGeometry ('topo boston', f.face id))
AND ST Area (ST Intersection(n.geom, o
topology.ST GetFaceGeometry('topo boston', f.face id))) >
~ ST Area(topology.ST GetFaceGeometry ('topo boston',

f.face id))*0.5)"
GROUP BY n.gid) As foo

WHERE foo.gid = boston.neil.gid;

PostGIS 2.0 ROCKS

If more than 50% of a face falls in
a neighborhood boundary it is part of that neighborhood

Clisibealoss

Eass Boglos

APsman Bragsin Back BagBaacan b

Dwchargien

Myl Pk

geom: Boundaries drawn

Eanl Beman

Crmmir sl

Fetulosli gl nan ek fayDearonEil

B Boaman
Frmsyen Wrmmere
Sorgth Esal

Mamapan
‘s Foodsery u:

Hydn Pk

topo: Formed from faces of Tiger data
which are formed from edges
like street center lines

PostGIS 2.0 ROCKS
Topology summary after layers

SELECT topology.TopologySummary ('topo boston');

topologysummary

Topology topo boston (15), SRID 2249, precision 0.25

20576 nodes, 31597 edges, 11109 faces, 25090 topogeoms 1in 2
layers

Layer 5, type Lineal (2), 25075 topogeoms
Deploy: boston.roads.topo
Layer 6, type Polygonal (3), 15 topogeoms

Deploy: boston.nei.topo

PostGIS 2.0 ROCKS
Raster

Over 70 functions and growing
For more information:

Key Features
» Loader — (python with numpy and gdal required)
can load individual and chunk them or load folders of raster files
* Intersections / Intersect with geometry — returns geometry
(raster equivalents not yet available but ST _Intersection(raster/raster)
planned for before PostGIS 2.0 release)
« Extract individual pixel values
« Output functions - Output as any GDAL supported raster
or a postgis geometry
« Constructor Functions — make rasters from scratch, existing, or geometry
 Stats — Statistics about a raster coverage or tile
* Processing — morphs to another raster or postgis geometry

PostGIS 2.0 ROCKS
Load Raster

This generates an sql file that will load all the jpegs in current folder into a new table called
aerials.boston (Massachusetts State Plane Meters (26986)), with each raster record
100x100 pixels width / height. The —F will create a column called filename in the table

which will list

The jpeg file each raster record tile came from.
The -1 will create a gist index on convex hull of the raster.

python raster2pgsgl.py -r bos tiles*.Jjpg \
-t aerials.boston -s 26986 -k 100x100 \
-F -I -0 aerials.sql

This runs the script loading the data into mygisdb
psgl —-d mygisdb —-f aerials.sqgl

PostGIS 2.0 ROCKS
Raster Overviews (aka Pyramid)

These are lower resolution raster tables of your primary tables. These are registered in a table
called: raster overviews and created using the loader with —| level switch

It works kind of like this: (assuming all you set your overviews
as same block size as your regular)

oV = 4
~ n/24
records

ov = 2
~ n/4 records

Your raster data say n
records broken up as
100x100 (same as ov = 1)

PostGIS 2.0 ROCKS
Regular compare Overviews

Overviews are good for zoom out and also doing faster but less high res calculations:
For our small sample:

—-—-result: 845 records

SELECT COUNT (*) FROM aerials.o 4 boston;
-—result: 3,125 records

SELECT COUNT (*) FROM aerials.o 2 boston;
--result: 20,000 records

SELECT COUNT (*) FROM aerials.boston;

PostGIS 2.0 ROCKS
Load Data Overview (Pyramid)

This generates an sql file that will load all the jpegs in current folder into a new table called
aerials.02_boston (Massachusetts State Plane Meters (26986)) for our table

aerials.boston, with each raster record

100x100 pixels width / height but lower res.

The —F will create a column called filename in the table

which will list

The jpeg file each raster record tile came from.

The -1 will create an overview table for aerials.boston with ov level (in this case 4)

Note: The table will be called aerials.o 4 boston (not aerials.boston), but will be
Registered in raster overviews table and associated with aerials.boston

python raster2pgsgl.py -r *.jpg \
-t aerials.boston -s 26986 -1 4 -k 100x100 \
-F -I -0 aerials overview4.sql

This runs the script loading the data into mygisdb

psgl —-d mygisdb —-f aerials overviewd.sqgl

PostGIS 2.0 ROCKS
Raster

Seamless Geometry / Raster
ST Intersects (geometry,raster)

ST Intersection(geometry,raster)

PostGIS 2.0 ROCKS
Raster ST Intersects

How many parcels intersect our loaded raster tiles

SELECT COUNT (DISTINCT p.map id)

FROM massgis.parcels boston As p
INNER JOIN aerials.boston As r
ON ST Intersects(p.geom, r.rast);

PostGIS 2.0 ROCKS
Stats: ST ValueCount

Give pixel value distribution of band 1 of
all tiles in samples.downtown_chunked

SELECT (pvc) .value As val
, SUM((pvc) .count) As pilxcount
FROM
(SELECT ST ValueCount (rast,1l) AS pvc
FROM samples.downtown chunked As p
) As rpvc
WHERE (pvc) .value BETWEEN 10 AND 254
GROUP BY (pvc) .value
HAVING SUM((pvc) .count) > 8880
ORDER BY (pvc) .value;

val pilxcount

32 9652

33 12791
34 15216
35 18146
36 21466

37 25033

PostGIS 2.0 ROCKS
Raster

Output Functions
ST AsPNG(raster)

ST AsSTIFF (raster....)

ST AsJPEG(raster....)

ST AsGDALRaster (raster...)
ST Polygon (raster,band num)

Constructor Functions
ST MakeEmptyRaster

ST AsRaster (geometry)
ST Band(raster ..)

PostGIS 2.0 ROCKS
Output: ST AsPNG, ST AsJPEG

With these you can make a quickie query viewer.

Functions currently output only 1 raster tile, not set of

Minimalist PostGIS 2.0 Spatial Query Web Viewar

e epreiies of rpe i Behind the scenes:
SELECT
ST AsPNG (
(SELECT rast
e - . FROM chl3.pele LIMIT 1),

ARRAY[1,2,3]))=

Outputs the first 3 bands;

PostGIS 2.0 ROCKS
Constructor: ST AsRaster

The Expression is of type: Geumetr-_.rE

(SELECT 5T Union(geom] FROM neighborhoods)

Results

F%

Used in quickie viewer to render geometries
in browser:

Behind the scenes:
SELECT ST AsPNG (

ST AsRaster (
(SELECT ST Union (geom)
FROM neighborhoods),
200,200,
ARRAY['8BUI', "
ARRAY[255,0,0]
ARRAY[0,0,0]
))
Creates a raster of 200x200 pixels in same
projection as input geometry with 3 8BUI bands
where data pixels are initialized to RGB
(255,0,0) (a red color) and inactive —
nodatavalue are set to black (0)

8BUI', '8BUI'],

)

PostGIS 2.0 ROCKS
Constructor: ST _Polygon

SELECT ST Polygon (
ST SetBandNoDataValue (
rast,1l,255)
r 1)
FROM chl3.pele;
Converts band 1 of raster to a
polygon/multipolygon geometry. We are
combining with ST_SetBandNoDataValue so
pixel values = 255 are ignored.

MULTIPOLYGON (((244 -381,245 -381,245 -382,244 -382,244 -381)),
((245 -382,246 -382,246 -383,245 -383,245 -382)),
((2l6 —-322,217 -322,217 -323,216 -323,216 -322)),...

PostGIS 2.0 ROCKS
Constructor: ST _Band

Creates a new raster from existing just containing specified bands in
specified order:

-- return new raster containing just band 3
SELECT ST Band(rast,3) FROM
chl3.pele

-- return new raster containing first 3 bands

reshuffled in different order
SELECT ST Band(rast,ARRAY[3,2,1])

FROM chl3.pele

PostGIS 2.0 ROCKS
Raster

Processing Functions

— lots too many to mention
ST Reclass (raster)

ST Resample (raster....)
ST Transform(raster....)
ST MapAlgebra(raster...)
some others and more coming
probably before 2.0 release

PostGIS 2.0 ROCKS
Processing: ST _Reclass

Creates a new raster from existing just containing specified bands in
specified order: e

-- Before
SELECT rast FROM

samples.downtown chunked WHERE
rid=20

-- Reclassify pixels
SELECT ST Reclass (rast,
ROW (1, '0-87]:100, (87-100]1:150, (101-
2541:0-0', '8BUI',NULL) ::reclassarg,
ROW (2, '0-253]1:50, 254:0', '8BUI',
NULL) : :reclassarg,
ROW (3, '0-70]:70, (70-100:100, [86-
150) :250, [150-255:255"', '8BUI',
NULL) : :reclassarq)

FROM samples.downtown chunked
WHERE rid=20

PostGIS 2.0 ROCKS
Processing: ST_Resample

Creates a new raster from original resampling by specified method

-- Before
SELECT rast

FROM aerials.boston WHERE rid=11;

-- Reduce size of aerial by 25% using CubicSpline
SELECT ST Resample (rast,NULL,

1.25*ST ScaleX(rast),
1.25*ST ScaleY(rast),NULL,NULL, 0,0,
'"CubicSpline'")

FROM aerials.boston WHERE
rid=11;

-- Reduce size of aerial by 25% using
NearestNeighbor

SELECT ST Resample (rast,NULL,
1.25*ST ScaleX(rast),

1.25*ST ScaleY(rast),NULL,NULL, O, O,
‘NearestNeighbor"')

FROM aerials.boston WHERE

rid=11;

PostGIS 2.0 Raster
Intersection with geometry

Pick a parcel /| show average pixel value —
faster to work with lower res but less accurate

-- band 3 average for overview - (avg pixval: 89.12 - 991 ms)

SELECT SUM(ST Area((gv).geom)* (gv) .val)/SUM(ST Area((gv).geom))

FROM (
SELECT ST Intersection(r.rast,3, p.geom) As gv
FROM massgis.parcels boston As p INNER JOIN aerials.o 4 boston As r
ON ST Intersects(p.geom, r.rast)

WHERE p.map id = '2010306000') As foo;

-- band 3 average for overview - (avg pixval: 136.7 - 3 secs)

SELECT SUM(ST_Area((gV).geom)*(gv).val)/SUM(ST_Area((gv).geom))

FROM (
SELECT ST Intersection(r.rast,3, p.geom) As gv
FROM massgis.parcels boston As p INNER JOIN aerials.o 2 boston As r
ON ST Intersects(p.geom, r.rast)

WHERE p.map id = '2010306000"') As foo;

-- band 3 average for full - (avg pixval: 137.8 -- 12 secs)

SELECT SUM(ST_Area((gV).geom)*(gv).val)/SUM(ST_Area((gv).geom))

FROM (
SELECT ST Intersection(r.rast,3, p.geom) As gv
FROM massgis.parcels boston As p INNER JOIN aerials.boston As r
ON ST Intersects(p.geom, r.rast)

WHERE p.map id = '2010306000"') As foo;

Mapserver Layer

LAYER
NAME boston aerials
TYPE raster
STATUS ON

DATA "PG:host=‘localhost' port='5432"
dbname="'ma' user='ma' password=‘test'
schema='aerials' table='o 2 boston' mode='2"'""
PROJECTION -
"Init=epsg:26986"
END
END

Using aerials.o_2 boston Using aerials.boston

Open Source Tools that work
with PostGIS raster

GDAL - 1.8+ has PostGIS raster driver (looking for funding to improve
performance)

QGIS beta support now via plug-in

GvSig beta support will be integrated in next release available as a plug-in
now for current (but only works with older WKT Raster (0.1.6))

MagServer — the first to work — via GDAL driver 1.7+ (better to use 1.8+
DAL driver)

Make your own with favorite tools using output functions:

Questions

